Serveur d'exploration sur Caltech

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon

Identifieur interne : 000043 ( Main/Exploration ); précédent : 000042; suivant : 000044

Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon

Auteurs : A. L. Roberson [États-Unis] ; J. Roadt [États-Unis] ; I. Halevy [États-Unis] ; J. F. Kasting [États-Unis]

Source :

RBID : ISTEX:A2584C1EFCF416C54FF9A25AAC60D70595858CF4

Abstract

An anoxic, sulfidic ocean that may have existed during the Proterozoic Eon (0.54–2.4 Ga) would have had limited trace metal abundances because of the low solubility of metal sulfides. The lack of copper, in particular, could have had a significant impact on marine denitrification. Copper is needed for the enzyme that controls the final step of denitrification, from N2O to N2. Today, only about 5–6% of denitrification results in release of N2O. If all denitrification stopped at N2O during the Proterozoic, the N2O flux could have been 15–20 times higher than today, producing N2O concentrations of several ppmv, but only if O2 levels were relatively high (>0.1 PAL). At lower O2 levels, N2O is rapidly photodissociated. Methane concentrations may also have been elevated during this time, as has been previously suggested. A lack of dissolved O2 and sulfate in the deep ocean could have produced a high methane flux from marine sediments, as much as 10–20 times today’s methane flux from land. The photochemical lifetime of CH4 increases as more CH4 is added to the atmosphere, so CH4 concentrations of up to 100 ppmv are possible during this time. The combined greenhouse effect of CH4 and N2O could have provided up to 10° of warming, thereby keeping the surface warm during the Proterozoic without necessitating high CO2 levels. A second oxygenation event near the end of the Proterozoic would have resulted in a reduction in both atmospheric N2O and CH4, perhaps triggering the Neoproterozoic “Snowball Earth” glaciations.

Url:
DOI: 10.1111/j.1472-4669.2011.00286.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon</title>
<author>
<name sortKey="Roberson, A L" sort="Roberson, A L" uniqKey="Roberson A" first="A. L." last="Roberson">A. L. Roberson</name>
</author>
<author>
<name sortKey="Roadt, J" sort="Roadt, J" uniqKey="Roadt J" first="J." last="Roadt">J. Roadt</name>
</author>
<author>
<name sortKey="Halevy, I" sort="Halevy, I" uniqKey="Halevy I" first="I." last="Halevy">I. Halevy</name>
</author>
<author>
<name sortKey="Kasting, J F" sort="Kasting, J F" uniqKey="Kasting J" first="J. F." last="Kasting">J. F. Kasting</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A2584C1EFCF416C54FF9A25AAC60D70595858CF4</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1472-4669.2011.00286.x</idno>
<idno type="url">https://api.istex.fr/document/A2584C1EFCF416C54FF9A25AAC60D70595858CF4/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000704</idno>
<idno type="wicri:Area/Main/Curation">000704</idno>
<idno type="wicri:Area/Main/Exploration">000043</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Exploration">000043</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon</title>
<author>
<name sortKey="Roberson, A L" sort="Roberson, A L" uniqKey="Roberson A" first="A. L." last="Roberson">A. L. Roberson</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geosciences, Pennsylvania State University, University Park, PA</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Roadt, J" sort="Roadt, J" uniqKey="Roadt J" first="J." last="Roadt">J. Roadt</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics and Astronomy, University of Wisconsin‐Eau Claire, Eau Claire, WI</wicri:regionArea>
<wicri:noRegion>WI</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Halevy, I" sort="Halevy, I" uniqKey="Halevy I" first="I." last="Halevy">I. Halevy</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geological and Planetary Sciences, Caltech, Pasadena, CA</wicri:regionArea>
<wicri:noRegion>CA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kasting, J F" sort="Kasting, J F" uniqKey="Kasting J" first="J. F." last="Kasting">J. F. Kasting</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geosciences, Pennsylvania State University, University Park, PA</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geobiology</title>
<idno type="ISSN">1472-4677</idno>
<idno type="eISSN">1472-4669</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-07">2011-07</date>
<biblScope unit="volume">9</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="313">313</biblScope>
<biblScope unit="page" to="320">320</biblScope>
</imprint>
<idno type="ISSN">1472-4677</idno>
</series>
<idno type="istex">A2584C1EFCF416C54FF9A25AAC60D70595858CF4</idno>
<idno type="DOI">10.1111/j.1472-4669.2011.00286.x</idno>
<idno type="ArticleID">GBI286</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1472-4677</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An anoxic, sulfidic ocean that may have existed during the Proterozoic Eon (0.54–2.4 Ga) would have had limited trace metal abundances because of the low solubility of metal sulfides. The lack of copper, in particular, could have had a significant impact on marine denitrification. Copper is needed for the enzyme that controls the final step of denitrification, from N2O to N2. Today, only about 5–6% of denitrification results in release of N2O. If all denitrification stopped at N2O during the Proterozoic, the N2O flux could have been 15–20 times higher than today, producing N2O concentrations of several ppmv, but only if O2 levels were relatively high (>0.1 PAL). At lower O2 levels, N2O is rapidly photodissociated. Methane concentrations may also have been elevated during this time, as has been previously suggested. A lack of dissolved O2 and sulfate in the deep ocean could have produced a high methane flux from marine sediments, as much as 10–20 times today’s methane flux from land. The photochemical lifetime of CH4 increases as more CH4 is added to the atmosphere, so CH4 concentrations of up to 100 ppmv are possible during this time. The combined greenhouse effect of CH4 and N2O could have provided up to 10° of warming, thereby keeping the surface warm during the Proterozoic without necessitating high CO2 levels. A second oxygenation event near the end of the Proterozoic would have resulted in a reduction in both atmospheric N2O and CH4, perhaps triggering the Neoproterozoic “Snowball Earth” glaciations.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Roberson, A L" sort="Roberson, A L" uniqKey="Roberson A" first="A. L." last="Roberson">A. L. Roberson</name>
</region>
<name sortKey="Halevy, I" sort="Halevy, I" uniqKey="Halevy I" first="I." last="Halevy">I. Halevy</name>
<name sortKey="Kasting, J F" sort="Kasting, J F" uniqKey="Kasting J" first="J. F." last="Kasting">J. F. Kasting</name>
<name sortKey="Roadt, J" sort="Roadt, J" uniqKey="Roadt J" first="J." last="Roadt">J. Roadt</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amerique/explor/CaltechV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000043 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000043 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amerique
   |area=    CaltechV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:A2584C1EFCF416C54FF9A25AAC60D70595858CF4
   |texte=   Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 11:37:59 2017. Site generation: Mon Feb 12 16:27:53 2024